Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK1(geq2(X1, X2)) -> A__GEQ2(X1, X2)
A__GEQ2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
A__IF3(false, X, Y) -> MARK1(Y)
MARK1(minus2(X1, X2)) -> A__MINUS2(X1, X2)
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__DIV2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)
A__MINUS2(s1(X), s1(Y)) -> A__MINUS2(X, Y)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)

The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK1(geq2(X1, X2)) -> A__GEQ2(X1, X2)
A__GEQ2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
A__IF3(false, X, Y) -> MARK1(Y)
MARK1(minus2(X1, X2)) -> A__MINUS2(X1, X2)
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__DIV2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)
A__MINUS2(s1(X), s1(Y)) -> A__MINUS2(X, Y)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)

The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

A__GEQ2(s1(X), s1(Y)) -> A__GEQ2(X, Y)

The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


A__GEQ2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(A__GEQ2(x1, x2)) = 2·x1 + x2   
POL(s1(x1)) = 2 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

A__MINUS2(s1(X), s1(Y)) -> A__MINUS2(X, Y)

The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


A__MINUS2(s1(X), s1(Y)) -> A__MINUS2(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(A__MINUS2(x1, x2)) = 2·x1 + x2   
POL(s1(x1)) = 2 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK1(if3(X1, X2, X3)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__IF3(false, X, Y) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)

The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MARK1(if3(X1, X2, X3)) -> MARK1(X1)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
The remaining pairs can at least be oriented weakly.

MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__IF3(false, X, Y) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(A__DIV2(x1, x2)) = 0   
POL(A__IF3(x1, x2, x3)) = 2·x2 + x3   
POL(MARK1(x1)) = x1   
POL(a__div2(x1, x2)) = 2   
POL(a__geq2(x1, x2)) = 0   
POL(a__if3(x1, x2, x3)) = 1 + x2   
POL(a__minus2(x1, x2)) = 2·x2   
POL(div2(x1, x2)) = 2·x1   
POL(false) = 0   
POL(geq2(x1, x2)) = 0   
POL(if3(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + x3   
POL(mark1(x1)) = 0   
POL(minus2(x1, x2)) = 0   
POL(s1(x1)) = 2·x1   
POL(true) = 0   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__IF3(false, X, Y) -> MARK1(Y)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> MARK1(X1)

The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__IF3(false, X, Y) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
The remaining pairs can at least be oriented weakly.

MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(A__DIV2(x1, x2)) = 1 + 2·x1   
POL(A__IF3(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(MARK1(x1)) = 1 + x1   
POL(a__div2(x1, x2)) = 2·x1   
POL(a__geq2(x1, x2)) = 1   
POL(a__if3(x1, x2, x3)) = x2 + x3   
POL(a__minus2(x1, x2)) = 0   
POL(div2(x1, x2)) = 2·x1   
POL(false) = 1   
POL(geq2(x1, x2)) = 1   
POL(if3(x1, x2, x3)) = x2 + x3   
POL(mark1(x1)) = x1   
POL(minus2(x1, x2)) = 0   
POL(s1(x1)) = 2 + 2·x1   
POL(true) = 1   

The following usable rules [14] were oriented:

a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(0, s1(Y)) -> 0
mark1(true) -> true
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
mark1(s1(X)) -> s1(mark1(X))
a__if3(true, X, Y) -> mark1(X)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
a__if3(false, X, Y) -> mark1(Y)
a__minus2(0, Y) -> 0
a__minus2(X1, X2) -> minus2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
a__geq2(0, s1(Y)) -> false
mark1(false) -> false
a__div2(X1, X2) -> div2(X1, X2)
a__geq2(X, 0) -> true
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(0) -> 0



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)

The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK1(div2(X1, X2)) -> MARK1(X1)

The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MARK1(div2(X1, X2)) -> MARK1(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(MARK1(x1)) = 2·x1   
POL(div2(x1, x2)) = 1 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.